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We investigate the rate constant for Langevin-type bimolecular recombination using a Monte Carlo model.
It is found that filamentary transport, mobility anisotropy, restriction of transport in one dimension, and
confinement of electrons and holes to one transporting component within a blend can cause significant devia-
tions from classical Langevin behavior. We discuss in detail the reasons for the failure of the Langevin model
for these instances, provide alternative formula, and comment upon the implications for polymer transistors,
LEDs, and photovoltaics.
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I. INTRODUCTION

Bimolecular recombination of charge carriers is of funda-
mental importance for a wide range of polymer electronic
devices. Significantly, it is the process that provides light
emission in ambipolar light-emitting field-effect transistors
�LFETs� and light-emitting diodes �LEDs�. Its effects are
also important in photovoltaic �PV� devices although delete-
rious in this instance, as it limits fill factor under solar illu-
mination and gives rise to sublinear intensity dependence of
the photocurrent. Clearly it is important that we have good
understanding of the processes leading to bimolecular re-
combination and the mathematical tools to describe them. As
we discuss below, most attempts to quantify bimolecular re-
combination in these polymer devices fail to a large extent.
In this paper we show that these failures are primarily be-
cause the context in which transport occurs, for example, the
quasi-two-dimensional �2D� nature of transport in LFETs is
not taken into account. By taking into account the context we
explain a wide range of discrepancies between experiment
and theory in these technologically important devices while
also presenting alternative equations appropriate to these in-
stances.

The total rate of bimolecular recombination in a device
can conveniently be considered as being due to two sequen-
tial processes. First, there is the rate at which a pair of car-
riers within a random ensemble are transported toward one
another. The rate constant for this process is defined as �,
which is normalized in units of carrier density for electrons
and holes, n and p, respectively, such that the total rate at
which carriers meet per unit volume is �np. Second, there is
the efficiency with which a pair of carriers in close proximity
recombine, �, which is determined by the competition of the
hopping rate with the recombination rate for adjacent carri-
ers. Since the mean-free path in a polymer � ��1 nm� is
typically much smaller than the thermal capture radius, rc
��20 nm at room temperature�, transport will comprise
many hops. In this regime the Langevin expression1 is typi-
cally used to describe the rate constant,

� =
q��e + �h�

��0
, �1�

where q is the electronic charge, �e and �h are the electron
and hole mobilities, �0 is the permittivity of free space, and �

is the relative permittivity. Although bimolecular recombina-
tion is generally transport controlled in polymers, it is worth
remembering that there are a range of other implicit assump-
tions inherent in Eq. �1� that are not satisfied in real devices.
In particular, electrons and holes are assumed to be distrib-
uted uniformly, which is violated in materials with a large
degree of energetic disorder; the transport is assumed to be in
three dimensions, which is violated in multilayer LEDs and
LFETs; carriers are assumed to inhabit the same homoge-
neous medium, which is violated in blend and bilayer PVs,
and multilayer LEDs; finally, transport is assumed to be iso-
tropic, which may be violated in materials with a high degree
of ordering. Despite these inadequacies, the use of Eq. �1� in
these various regimes is widespread. It is therefore not sur-
prising that the agreement between experiment and theoreti-
cal predictions, underpinned by Eq. �1�, is frequently poor.

In homogeneous materials it is expected that � will ap-
proach unity, and so the rate of bimolecular recombination is
described completely by �. Thus homogeneous materials
provide a very useful experimental avenue to test the validity
of Eq. �1�. In simple molecular crystals, Eq. �1� is shown to
work very well.2,3 This however seems to be the exception
rather than the rule for polymer devices. For example, Blom
et al.4 used a simple analytical technique to show the effec-
tive recombination rate constant �eff�4� in poly�dialkoxy
p-phenylene vinylene� �PPV� LEDs. More recently, ambipo-
lar LFETs, in which transport is confined to an accumulation
layer of �1 nm, have allowed more direct inspection of re-
combination behavior in homogeneous films.5 In this more
complicated structure, the agreement between Eq. �1� and
experiment is even worse as the predicted recombination
zone width of �0.5 �m in poly�9,9-dioctylfluorene-
co-benzothiadiazole� �F8BT� and poly��9,9-dioctylfluorene�-
2,7-diyl-alt-�4,7-bis�3-hexylthien-5-yl�-2,1, 3-benzothiadiaz-
ole�-2�2� diyl� �F8TBT� LFETs is significantly less than the
measured widths of 2–4 �m.6 Similarly poor agreement be-
tween measured and predicted recombination behaviors has
been demonstrated in LFETs fabricated from other polymers
as well.7 Still greater deviations from the Langevin equation
occur in materials which have anisotropic carrier mobility as
Zaumseil et al.8 have shown that LFETs fabricated from
aligned F8BT have �eff that is three orders of magnitude
smaller than that predicted by Eq. �1�.

In polymer PVs, electrons and holes are confined to their
respective accepting polymers and so the recombination rate
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is intrinsically lower than in homogeneous films; conse-
quently recombination competes with hopping in such de-
vices and ��1. This makes determination of the recombi-
nation rate constant in polymer PVs challenging since the
recombination rate is determined both by the rate constant
and the recombination efficiency. The recombination effi-
ciency is, however, relatively well-understood courtesy of
the analytical model of Onsager,9 and the later refinement by
Braun.10 Subsequently, a number of Monte Carlo
methods11–15 have additionally clarified the effect of mor-
phology, carrier mobility, and energetic disorder upon �.
These papers show that � increases as mobility decreases,
which is counter to the mobility dependence of �. This
would suggest that, if the measured recombination rate in-
creased with increasing mobility, we may be probing the rate
constant. That said, given the interconnected nature of the
transport and recombination processes,16 it seems a challeng-
ing prospect to ensure that one has deconvolved completely
the effects of � and � from experimental data. Pivrikas et
al.17 used a time-of-flight technique to measure the recombi-
nation rate and the mobility simultaneously in an annealed
poly�3-hexylthiophene� �P3HT�: 1-�3-methoxycarbonyl�
propyl-1-phenyl-�6,6�-methanofullerene �PCBM� blend PV
device and found that the time dependence of mobility
matched that of the recombination rate, suggesting that the
observed recombination behavior was due to the rate con-
stant. This experiment found �eff�10−3�, which has been
supported by additional time-of-flight,18,19 photo-CELIV,18,20

and double-carrier injection20,21 measurements on similar de-
vices. These findings are in quantitative agreement with
those of the Groningen22 and Imperial College23 groups who
used different techniques to quantify �eff /� on annealed
P3HT:PCBM blend devices. However, not all blend devices
show the same dramatic deviations from the Langevin equa-
tion as seen in annealed P3HT:PCBM devices, for example,
poly�2-methoxyl-5-�3,7-dimethyloctyloxy�-phenylene-
vinylene� �MDMO-PPV�:PCBM blends have �eff /��0.5.24

Therefore, it seems to be the case that blends are character-
ized by sub-Langevin recombination rates but the extent to
which the Langevin expression overestimates the rate con-
stant depends upon the materials and processing conditions.
These data have further significance, as while the rate con-
stant in blends is sub-Langevin, it has shown that bimolecu-
lar recombination is still of Langevin type, i.e., that recom-
bination is limited by mobility. This suggests that the
intrinsic mechanism of transport-controlled recombination
needs to be modified rather than replaced.

Thus there is a large amount of evidence that the rate
constant deviates significantly from the Langevin expression
in a number of technologically important devices. We there-
fore need to understand why the Langevin expression is de-
ficient in these cases and to provide an alternative. The dif-
ferences between theory and experiment in LFETs may be
due to the near two-dimensional transport in these devices.
Greenham and Bobbert25 showed by using a variety of tech-
niques that in the limit of two-dimensional transport the rate
constant becomes weakly dependent upon charge density but
did not relate this to the expectations of the Langevin expres-
sion. In LFETs and multilayer LEDs it seems likely that
carriers will be confined to within a few nanometers of an

interface, and so the rate constant may not be described well
by either the three-dimensional limit described by Langevin
or the two-dimensional limit described by Greenham and
Bobbert.25 For devices comprising electron- and hole-
accepting polymers, there seems to be a broad consensus
from experiment that �eff is smaller than that predicted by
the Langevin expression. However, the mechanism for this
modification is not commonly agreed upon and has variously
been attributed to the spatial separation of carriers,26 trapping
via energetic disorder,27 or isolated deep states,28 and the
slower carrier’s transit to the heterointerface being the rate-
limiting step.22 While these mechanisms are physically plau-
sible, there is no comparative study of these effects to enable
consensus on the issue. A number of Monte Carlo
simulations29–31 have been used to clarify various aspects of
recombination behavior. However, these studies either report
recombination cross sections rather than the rate constants
demanded for macroscopic drift-diffusion modeling or do
not calculate the rate constant directly. Preliminary modeling
by the authors in Ref. 8 has shown for a limited set of cir-
cumstances the effect of anisotropy and dimensionality upon
the rate constant. Here we extend this work to reveal general
trends, and thus explain the differences between experimen-
tal data and the predictions of the Langevin expression and
experiment. To do this we use a Monte Carlo model that can
evaluate �eff directly, and use this to characterize the effect
of mobility anisotropy, dimensionality, and the restriction of
carriers to respective polymer types upon �eff. We present
discussions as to why the Langevin expression fails in each
case and present alternative analytical formula that can be
used in these circumstances.

II. MODEL DETAILS

The simulation volume comprises of a cubic regular lat-
tice of hopping sites spaced by 1 nm. The size of the simu-
lation volume was varied for each trial to safeguard against
finite-size effects, particularly for large anisotropy ratios. To
obtain size-independent rate constants, the volume typically
had to be 50–350 nm in extent along each side. Each site is
assigned a Gaussian distributed energetic disorder of stan-
dard deviation, �. We assume that there is no correlation
between the values of energetic disorder on neighboring
sites. This simplifying assumption may not be a good ap-
proximation of transport for all polymer devices but seems to
give reasonable agreement with measured experimental data
for PVs.11 We assume that energetic disorder will affect the
energy for an electron and hole in the same manner. Since
hopping transport in disordered media has recently been
shown to be filamentary in nature,32 this assumption implies
that electrons and holes preferentially follow the same fila-
ments. Electrons and holes are injected at random unoccu-
pied positions within the lattice until a chosen charge density
is reached. All simulations in this paper have n= p. Hopping
rates from the current site i to a nearest-neighbor site j are
calculated by a Marcus rate expression,33

Ri→j = �hop 	 exp�−
�Ej − Ei + ER�2

4ERkT
	 . �2�
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Here Ei and Ej are the potential energies of the sites i and
j, respectively, ER is half the polaron energy, and �hop is a
prefactor which quantifies the wave-function overlap be-
tween neighboring highest occupied molecular orbital
�HOMO� or lowest unoccupied molecular orbital �LUMO�
levels. The energies used in Eq. �2� include energetic disor-
der, applied electric field, F, and Coulomb interactions be-
tween carriers up to the thermal capture radius, which here is
21 nm ��=3�. Cyclic boundary conditions are allowed for
hopping and for the Coulomb potential in all directions. The
simulation volume is chosen to be larger than the Coulomb
interaction radius to avoid self-interaction of carriers. Of all
possible options, the one with the shortest waiting time is
chosen as the behavior for that carrier before being entered
into an appropriate place in the queue. After each event, the
potential landscape upon which the hopping rates depend
will alter. Hence, in order to ensure that the hopping rates of
carriers are always appropriate to its surroundings, we recal-
culate the behavior of each carrier after every hopping or
recombination event. This rather computationally expensive
method is referred to as the dynamical Monte Carlo method,
which contrasts to the more commonly used first reaction
method,34 in which the behavior of an individual carrier is
calculated only once immediately after it has completed its
previous hop. Previous comparisons between these two
methods for smaller charge densities than those examined
here have shown little difference,11 and indeed we presently
find that there is little discernible difference between the two
methods for homogeneous materials with isotropic mobility.
However, since over the course of this paper we will be
examining a great many physical cases, we err on the side of
caution and use the more correct dynamical Monte Carlo
method.

Recombination occurs between adjacent dissimilar carri-
ers instantaneously, and therefore our recombination rate
quantifies the rate constant, �eff. When a pair of carriers re-
combine, they are removed from the simulation, whereupon
we inject a replacement electron and hole at random unoc-
cupied positions. This continues until the xth recombination
event occurs, upon which the simulation is stopped and the
time tx is noted. The simulation is repeated many times with
different configurations of energetic disorder and initial car-
rier positions to determine 
tx� reliably. The process of aver-
aging over many recombination events is necessary since it
lessens the importance of the carrier start positions. For each
simulation the value of x is increased until the average inter-
recombination time becomes independent of x, which for
most simulations reported here occurs for x�300.

If we are to make comparisons between the measured �eff
and the Langevin-predicted �, we must also know the mo-
bility of the charge carriers for the given charge density.
Thus we use two simulations: one to predict the mobility and
one to predict the recombination dynamics, which have the
same transport parameters. To measure the mobility, only
one carrier type is injected, a field is applied, and then the
average distance traveled downfield is measured for a given
length of time. When energetic disorder is present, we allow
the carriers sufficient time to settle in the density of states
before measuring the equilibrium mobility. This poses a
problem for the model of recombination dynamics, as if we

were to inject carriers at random positions within a lattice
with uncorrelated disorder, their energy distribution would
match the density of states. Albrecht and Bässler15 have
shown that, in the low charge-density limit, carriers relax to
have an energy distribution with mean energy −�2 /kT and
standard deviation �. Thus, injecting carriers at random
gives carriers a nonequilibrium energy distribution, which in
turn enhances their mobility over short time scales. We ex-
pect for real devices that thermalization will be rapid, and so
carriers will have an energy which is closer to the quasi-
Fermi level than the center of the density of states. To re-
solve this problem for the recombination dynamics model,
the energetic disorder for each site upon which a carrier is
“injected” is rechosen from the equilibrium energy distribu-
tion. In this way, the short-time mobility of the carriers is the
same as the equilibrium mobility which we measure directly
using the Monte Carlo mobility model described above. Ob-
viously this method distorts the energetic disorder distribu-
tion to an extent that increases with charge density. However,
we anticipate this effect to be small since the peak charge
density considered �5	1017 cm−3� corresponds to only
0.1% of the hopping sites, having their energetic disorder
picked from the equilibrium energy distribution. When a car-
rier recombines, we rechoose the disorder for the injection
site of the recombined carrier from the density of states and
rechoose the disorder of the injection site for the replacement
carrier from the equilibrium energy distribution. In this way
the number of sites with disorder that is not picked from the
density of states stays constant throughout the simulation.

In the following simulations we use three sets of param-
eters corresponding to �=0, 75, and 100 meV. The remain-
ing parameters, shown in Table I, are chosen to be physically
reasonable and to give steady-state mobility of
10−4 cm2 /V s when F=107 V /m unless otherwise stated.
Mobility varies linearly with �hop and thus the mobility is
changed along appropriate axes by scaling �hop by the appro-
priate amount. For the homogeneous materials, electrons and
holes are allowed to occupy any unoccupied hopping site,
whereas carriers are restricted to their own polymer type in
blend electron- and hole-transporting material. A blend mor-
phology of average feature size d=4 nm was generated by a
process of simulated annealing in the same manner as in Ref.
11. Blend morphologies with coarser feature sizes were made
by an approximate technique in which a 4 nm blend is sim-
ply scaled by a factor.35 Quasi-two-dimensional structures
were realized by removing cyclic boundary conditions in one
dimension, and in limiting the extent of the simulation vol-
ume to an extent l.

TABLE I. Parameters used in the simulation.

Disorder �meV� �hop �s−1� ER �J� T �K� �

0 4	1011

�75 9.5	1012 1.2	10−19 298 3

100 1.8	1014
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III. HOMOGENEOUS MATERIALS

A. Materials with isotropic and anisotropic mobilities
in the bulk

Our first experiment is to test the equivalence of �eff with
� for the simple case of homogeneous material with isotropic
mobility. Figure 1 shows �eff /� for charge densities of
1016 cm−3
n= p
5	1017 cm−3, fields of 0 V m−1
F

107 V m−1, and energetic disorder of 0 meV
�

100 meV, representing a typical range of conditions one
might find within polymer devices of varying types. Over the
range 0
�
75 meV, the Langevin result is reproduced
��eff /��1�. However, for �=100 meV we find that the rate
constant is enhanced, compared to the Langevin prediction,
by �35%. This is very likely to be a consequence of fila-
mentary transport. Energetic disorder naturally divides up the
transporting medium into regions through which transport is
more or less energetically favored, the former being called a
filament.32 The efficacy of disorder in forming filaments de-
pends upon the relative magnitudes of � and kT. If � is small
compared to kT, the “guiding” effect of disorder is weak and
so transport more closely approximates the assumption of
homogeneous transport upon which the Langevin equation is
based. When � is large compared to kT, carriers are increas-
ingly localized within the filamentary regions, and thus bi-
molecular recombination is faster for a given charge density.

To examine the effects of mobility anisotropy, we define a
single axis, hereafter the minor axis, upon which the mobil-
ity, �min, is varied. The other two, hereafter major, axes have
a constant mobility, �maj. In Fig. 2 we show the effect of
altering �min upon the rate constant, normalized to the pre-
diction of the Langevin equation using the mobility �maj,
�maj. To aid in the interpretation, we also show the predic-
tions of the Langevin equation for an isotropic system with
mobility �maj ��maj� and also for �min ��min�. Unsurprisingly
we find the predicted rate constants for an anisotropic system
comprising mobilities �maj and �min between those of isotro-

pic systems with mobilities �maj and �min. Consequently the
Langevin equation using either �maj or �min becomes an in-
creasingly poor predictor of the rate constant as mobility
anisotropy increases �although it would perhaps be unfair to
assert that the expression has failed since it is being used far
outside the founding assumptions upon which it is based�.
We find that for the case of equal, anisotropic electron and
hole mobilities, the rate constant can be fitted very well by
the following

�aniso =
2q��maj�min

��0
. �3�

The predictions of Eq. �3�, also shown in Fig. 2, are in
good agreement with the Monte Carlo data over four orders
of magnitude of mobility anisotropy. Note that we do not
report data below �min /�maj�0.1 since it was beyond the
memory capacity of our computer system to have a simula-
tion volume sufficiently large to ensure accurate data. In the
limit of zero mobility along the minor axis, we reproduce,
approximately, the two-dimensional limit which will be dis-
cussed in Sec. III B.

It should be noted that the mobility, and any associated
anisotropy, alters with length scale for a real polymer device.
Practically we expect mobility anisotropy to occur due to the
intentional alignment of polymer chains, as in Ref. 8, or by
spontaneous organization of polymer chains into crystalline
domains. Thus on the length scale of the thermal capture
radius, which is important in determining whether a charge
pair will recombine, the transport will be characterized by
fast intrachain hops down the chain length of �10 nm and a
significant mobility anisotropy. On the length scale of a de-
vice, however, the macroscopic drift mobility along the

1016 1017
0

1

2
� e
ff/�

Charge density (cm-3)

FIG. 1. �Color online� �eff /� as a function of charge density,
n= p. Squares correspond to �=0, triangles to �=75 meV, and
diamonds to �=100 meV. Open symbols represent F=0 and
closed symbols represent F=107 V /m.
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FIG. 2. �Color online� Measured �eff normalized to the Lange-
vin prediction of the transport rate using the major axis mobility,
�maj. Squares correspond to �=0 and triangles to �=75 meV.
Open symbols represent F=0 and closed symbols represent F
=107 V /m. The dashed lines show the predictions of the Langevin
equation using either the major or minor axis mobility while the
solid line shows the predictions of Eq. �3�.
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alignment direction will be limited by interchain hops. Con-
sequently, the drift mobility anisotropy will be smaller than
that on the nanoscopic scale. Including the nanoscopic detail
of the finite polymer chain lengths is beyond the scope of
this paper but will be important to study in the future.

B. Effect of constraining transport in one dimension

Greenham and Bobbert25 have shown that bimolecular re-
combination in the two-dimensional limit can only be de-
scribed by second-order kinetics if � is allowed to vary as
n0.43, in contrast to the density-independent rate constant
found in three dimensions by Langevin.1 Here we character-
ize the transport behavior in the transition between two and
three dimensions, a regime which most closely corresponds
to LFETs and multilayer LEDs. Figure 3 shows �eff /� for
1 nm
 l
50 nm and a variety of charge densities. At large
l the values of �eff agree with those measured in the bulk
shown in Fig. 1. As l reduces, �eff /� begins to fall simply
because the intercarrier spacing for a given charge density
increases as transport in one dimension is increasingly con-
strained, leading to a correspondingly smaller �eff. In the
two-dimensional limit �here this is l=1 nm� �eff /� is less
than unity by a factor that is dependent upon the concentra-
tion. Hence, we recreate the result in Ref. 25, i.e., that two-
dimensional transport gives rise to a weak dependence of �eff
on n. What is interesting to note is that this two-dimensional
behavior �i.e., �eff /��1 and �eff varying with n� can occur
for relatively weak confinement. The factor change in rate
constant with respect to the prediction of the Langevin equa-
tion �=�eff /�� can be fitted very well by

� = 1.5n1/3l . �4�

We show the predictions of Eq. 4 in Fig. 3, which can be
seen to be good over a wide range in charge density and l.
This expression is in reasonable agreement with the findings
of Greenham and Bobbert,25 who found that the rate constant
was proportional to n0.43 in the limit of two-dimensional
transport. Equation �4� is valid in the regime where ��1,
which interestingly corresponds to the range where the spac-
ing between carriers in a three-dimensional volume for a
given charge density is similar to, or larger than, l. Conve-
niently, setting �=1 allows us to define a confinement layer
thickness below which there will be two-dimensional behav-
ior,

l2D =
1

1.5n1/3 . �5�

The inset to Fig. 3 shows the prediction of the boundary
for two-dimensional transport given by Eq. �5�. It is striking
that for the entire range of charge density typically found in
the recombination zone of an LFET �1016 cm−3�n , p
�1018 cm−3�, l2D is substantially in excess of the accumula-
tion layer thickness of �1 nm.36 It therefore seems likely
that LFETs generally operate in the two-dimensional trans-
port regime, which is characterized by a rate constant that is
both reduced below the bulk value and weakly charge-
density dependent.25 This may explain, or at least play some
role, in the general failings of drift-diffusion modeling to
reproduce correctly the size of recombination zone in LFETs.
This is supported by estimates of recombination zone width
being typically too small.6,7 Taking a specific example, the
recombination zone in F8BT is predicted to be �0.5 �m
which compares to the measured values of 2–4 �m.6 Mak-
ing reasonable estimates of an accumulation layer thickness
of 1 nm, and n= p=1017 cm−3 in the recombination zone
�Eq. �4�� predicts �=0.069. The analytical technique in Ref.
37 predicts that this reduction in the rate constant would
result in a widening of the recombination zone by a factor
�3.8, much improving upon the fits using the standard
Langevin expression. The current result also has bearing
upon the performance of multilayer LEDs as Eq. �4� and Ref.
25 show that the light output of these devices should scale
superlinearly with mobilities of the electron- and hole-
transporting media. When applying these results to
multilayer LEDs, one should remember that it does not con-
sider the possibility of hopping over the heterointerface,
which is likely to reduce the effect confinement for small
potential barrier heights. A discussion of these issues is pre-
sented in Ref. 38.

Now that we have characterized the effect of anisotropy
and confinement upon the recombination behavior, we dis-
cuss the wider implications of these results in LFETs. The
LFET architecture provides a possible candidate for electri-
cally pumped organic lasers due to the high current density.
However, in a recent paper, Naber et al.39 have predicted that
such devices are some three orders of magnitude of current
density below that required for lasing. As we have seen,
alignment of the polymer chains significantly alters both the
transport and recombination behaviors, and so may provide a
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FIG. 3. �Color online� �eff /� as a function of the simulation
volume extent in one dimension, l. l=1 nm corresponds to the 2D
limit. Open symbols correspond to F=0 while closed symbols to
F=107 V /m �which is in the plane of the confined layer�. We show
data for �=0 meV �squares� and �=75 meV �triangles�, when the
charge density is n= p=1016 cm−3 �black�, 1017 cm−3 �red�, and
1018 cm−3 �blue�. In all cases the isotropic mobility is
10−4 cm2 /V s. The dotted line corresponds to the prediction of the
Langevin relation, while the solid lines show the predictions of Eq.
�4� for the charge densities examined. The inset shows the volume
thickness below, in which two-dimensional transport is expected
from Eq. �5�.
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promising route to realizing an electrically pumped organic
laser. The crucial quantity we wish to maximize is the exci-
ton density, which scales as I /W, where I is the drain current
and the W is the width of recombination zone. The current is
determined by the macroscopic drift mobility in the direction
of current flow, which can be improved by aligning the poly-
mer chains along the channel. For an isotropic mobility, W is
predicted to be independent of mobility since it is determined
by a balance between transport and recombination rates.37

However, for an aligned system we have shown above that
the recombination rate will be significantly reduced due to
the contribution from �min, causing an increase in W which
will counteract the improvement in I.40 Indeed, alignment of
polymer chains in F8BT LFETs resulted in an increase in I
by a factor of only �3 whereas W increased by a factor of
�10, actually reducing the exciton density in this case.8 It
therefore seems unlikely that polymer chain alignment could
provide the improvement in exciton density necessary to re-
alize an electrically pumped polymer laser.

IV. ELECTRON- AND HOLE-TRANSPORTING MEDIA

The most comprehensive set of experimental evidence for
deviations of the recombination behavior from the Langevin
equation comes from donor-acceptor systems. These devia-
tions are significant in annealed P3HT:PCBM solar cells,
with the rate constant being three orders of magnitude
smaller than the predictions of the Langevin equation. In
other blend systems the rate constant is also smaller than the
prediction of Langevin but only by a factor of less than 10.
In this section we use the Monte Carlo model to examine the
effect of constraining electrons and holes to their respective
polymers upon the rate constant in an attempt to explain
these data.

Figure 4 shows measured �eff values for 1:1 blends with
average domain sizes d of 4 and 35 nm. First we shall dis-
cuss the morphology with d=4 nm. When the mobilities are
equal, we find that �eff�0.5�, in contrast to homogeneous
material where isotropic, equal mobilities for electrons and
holes gave �eff��. This is because carriers must travel to
the interface in order to recombine and, on average, one of
the carriers is likely to be stuck at the interface while the
other carrier completes its longer trajectory, in a similar man-
ner to that described in Ref. 22. Thus the factor 0.5 repre-
sents the effect of having one carrier “wait” at the interface
averaged over many different starting positions of electrons
and holes on either side of the interface. When the electron
mobility is varied, �eff varies in a manner that is mostly
sympathetic to the Langevin equation. We do however find
that �eff�0.2� for a mobility ratio of three orders of mag-
nitude, in comparison with �eff�0.5� for equal mobilities,
showing that the rate constant has a slight dependence upon
the smallest mobility. It was suggested by Koster et al.22 that
rate constant was proportional to the smallest mobility and
showed that better fits to experimental data were achieved
when this smaller rate constant was used for annealed
P3HT:PCBM PVs. While we see a slight dependence of the
rate constant upon the smallest of the electron and hole mo-
bilities, its effects are not strong, as shown in Fig. 4, for a

wide range of morphologies. It is puzzling that the mecha-
nism described in Ref. 22 is not strong since the physical
picture seems quite clear. The key to understanding this is to
realize that one would expect the smallest mobility to deter-
mine the rate constant if all of the carriers start at the same
distance from an interface. However, in our simulation and in
devices in general, carriers are distributed at a range of po-
sitions from the interface. Consequently, even if one of the
species of carriers is far slower than the other, there will be a
population of these slow carriers close to the interface with
which the faster carriers can recombine, leading to the
weaker dependence of the rate constant upon the smallest
carrier mobility than that predicted in Ref. 22.

Increasing the energetic disorder to 75 meV while keeping
the isotropic mobility constant at 10−4 cm2 /V s for d
=4 nm blend is shown to reduce the rate constant over a
range of mobility ratios by �60% compared to the zero dis-
order case. These results are in contrast to that of homoge-
neous materials, where increasing the degree of disorder to
75 meV while keeping the isotropic mobility constant at
10−4 cm2 /V s made little difference to the rate constant.
This is because in a donor-acceptor system we place a re-
striction upon where recombination can take place �i.e., at
the interfaces�, and so recombination requires the coopera-
tion of both carriers. Hence, trapping of one carrier at a low-
energy site has a larger effect in these systems than in homo-
geneous systems, where if one carrier traps then the free
carrier can traverse the remaining distance and recombine.

The rate constant for the d=35 nm blend is smaller than
that for the d=4 nm blend for the same conditions, and the
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FIG. 4. �Color online� Measured �eff for a 1:1 blend of electron-
and hole-accepting polymers with an average feature size of d=4
�black� and 35 nm �red�. Squares correspond to �=0 and triangles
correspond to �=75 meV. Open symbols represent F=0 and
closed symbols represent F=107 V /m. In all cases the isotropic
hole mobility is 10−4 cm2 /V s. Dotted line shows the prediction of
the Langevin equation and the dashed line shows the prediction of
Langevin equation when only using the smallest mobility, as sug-
gested in Ref. 23.
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reduction is more significant for larger mobility ratios. This
is simply because, on average, carriers have to travel further
to the interface to recombine in the d=35 nm blend than in
the d=4 nm blend. Making the mobilities more unequal for
the larger domain size incurs a longer wait for the more
mobile carrier while the slower carrier traverses the large
domain, consequently reducing the rate constant. However,
this effect is weak, as increasing d by almost an order of
magnitude leads to a reduction in the rate constant by a fac-
tor of between �1 and �10, depending upon the mobility
ratio. Since reported PV devices generally have an optimized
domain size �d�20 nm� to balance exciton diffusion and
geminate pair separation,35 it seems unlikely that the domain
size could be responsible for a reduction in orders of magni-
tude in the rate constant.

We also examined the effect of an unequal volume frac-
tion of electron- to hole-transporting material, which we do
not show. The blend ratio was altered to 8:1 in favor of the
electron-transporting material, and an equal number of elec-
trons and holes were injected as previously done. As perhaps
might be expected, the rate constant followed much more
closely the prediction of the Langevin expression using the
electron mobility only. However, this effect is expected not
to cause an order-of-magnitude reduction in the rate con-
stant; as in real devices the volume ratio of donor to acceptor
material is close to unity to allow continuous pathways for
electrons and holes to the contacts. For example, in Ref. 22,
which reports �eff /�=10−3 for an annealed P3HT:PCBM de-
vice, the volume fraction of the P3HT to PCBM �2:3.

These data can thus explain very well the slight reduction
in the rate constant below the Langevin prediction in some
donor-acceptor blends24 through the weak effects of donor-
acceptor morphology, mobility mismatch, slight trapping,
and unequal volume ratios. However, these mechanisms, as
investigated here, are not sufficiently strong to explain the
anomalously low rate constant seen in annealed
P3HT:PCBM devices. Since we examine the effect of mobil-
ity mismatch, domain size, and unequal volume fraction on
rate constant over the ranges seen in annealed P3HT:PCBM
devices, we can rule out these factors as main contributors to
the low rate constant in this case. On this basis, it seems the
most likely explanation for the anomalously weak recombi-
nation in annealed P3HT:PCBM devices is trapping. While
we have showed that weak trapping from energetic disorder
with �=75 meV causes a slight reduction in the rate con-
stant, deeper traps would have a larger effect. Indeed, this
assertion has been made previously by Nelson et al.,28 who
showed that one could only fit to the transient photocurrent
in P3HT:PCBM solar cells if one included a number of iso-
lated deep traps. One may expect that the rate constant in the
presence of trapping would have a concentration depen-

dence, which is seen in experiment.23 Thus this explanation
appears to fit the available data very well. Further work to
obtain a quantitative fit of the current model to the rate con-
stant in annealed P3HT:PCBM devices is left to a later paper.

V. CONCLUSIONS

Here we have presented a model that can predict the bi-
molecular recombination rate constant in a variety of situa-
tions appropriate for polymer devices. The Langevin equa-
tion is generally found to fail to some extent, other than the
case for three-dimensional isotropic transport within materi-
als with energetic disorder of less than 75 meV at room
temperature. Increasing the degree of energetic disorder be-
yond this value increases the rate of recombination due to
filamentary transport. Unsurprisingly, mobility anisotropy
causes significant deviations from Langevin expression as
there is more than one significant mobility to consider. For
enhanced mobility along one axis, it is shown that the rate
constant is proportional to the square root of the product of
the two mobilities in the system. The effect of constraining
the transport within one dimension is also examined. It is
found the two-dimensional behavior, which is characterized
by a reduced rate constant that is charge-density dependent,
occurs for relatively weak confinement. This has the impli-
cation that light-emitting field-effect transistors generally op-
erate in the two-dimensional regime, perhaps explaining the
seemingly constant overestimation of recombination zone
width by drift-diffusion models. The effect of constraining
the transport of electrons and holes to their respective poly-
mer types, which is important in photovoltaic devices, is also
discussed. It is found that donor-acceptor systems do not
necessarily lead to large deviations from the Langevin equa-
tion, with the effect of domain size, electron-hole mobility
mismatch, and energetic disorder reducing the rate constant
by less than an order of magnitude. We suggest that the re-
duced transport rate measured in annealed P3HT:PCBM de-
vices is instead because of deep carrier trapping.
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, where  is
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